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A Tutorial with Java API and Examples on 
Valued Constraint Satisfaction Problems 

 
1. Introduction 

This document is a tutorial on the formulation and solution of ‘Valued Constraint Satisfaction 
Problems’. Valued constraint satisfaction problems are an extension of standard ‘Constraint 
Satisfaction Problems’, or CSP’s. A standard CSP consists of a series of variables and sets of 
possible assignments to these variables (domains), along with a set of constraints that relate the 
allowable assignments among the variables. For example, a crossword puzzle challenges us to fill 
in blank spaces with words. Crossword puzzles can be seen as CSP’s by treating sets of blank 
spaces as variables, and the word choices as domain values. The constraints arise from the 
requirement that if two words ‘cross’, the filled-in letter must be the same in both words. 

The constraints in the crossword puzzle are termed ‘hard constraints’, because they describe 
conditions that must be satisfied in order to achieve a valid solution. It is also possible to envision 
conditions that we would like to satisfy as much as possible. Perhaps a crossword puzzle designer 
is working for the Walt Disney Company to publicize a re-release of The Lion King. Therefore, 
he wants most of his words to be characters and quotes from the movie. However, if he required 
all of his words to describe lions and their adventures, he might be unable to create a valid puzzle 
at all. Therefore, he could create a ‘soft constraint’ that words should relate to the movie if 
possible. Soft constraints utilize a metric to measure the extent to which the constraint is 
satisfied; in this case, the metric would measure the number of Lion King-related words. 

Generally, valued constraint satisfaction problems include both hard and soft constraints; the 
extreme cases are problems which contain only hard constraints (yielding a standard CSP) and 
only soft constraints (yielding a pure constraint optimization problem). The established methods 
for solving these two types of problems are quite different. Constraint optimization problems can 
be solved using many of the standard optimization techniques, such as gradient search or 
heuristic methods (e.g. genetic algorithms). Constraint satisfaction problems, on the other hand, 
can be solved using backtrack search, constraint propagation, and combinations thereof (such as 
backtrack search with forward-checking). To solve valued CSP’s we need to combine these two 
sets of methods. We can leverage the hard constraints by pruning (deleting) solutions that violate 
these constraints; this reduces the space of possible solutions. At that point, the solution must be 
chosen by an optimization technique. There are multiple ways to combine these techniques, 
including solving a series of branch-and-bound searches with a gradually increasing lower-bound 
on the soft constraint’s metric (e.g. Russian Doll); bucket and mini-bucket elimination 
algorithms, and combinations of these techniques (the details are not included here; please refer 
to [1]). 

The solution algorithm described and implemented in this tutorial is branch-and-bound 
search, pruned by a heuristic function called ‘mini-bucket heuristics’ [1]. It combines the 
strategies of search and inference. The branch-and-bound/mini-bucket algorithm (BBMB) was 
chosen because it provides superior performance (in terms of space and time complexity and 
accuracy of the bounding heuristic function) than other algorithms such as bucket elimination or 
pure branch-and-bound search [1]. The basic idea of BBMB is to combine a branch-and-bound 
search (which leverages the hard constraints to prune infeasible solutions) with a mini-bucket 
heuristic function, which provides an efficient method for pruning sub-optimal solutions. (The 
details of the mini-bucket heuristic are provided in Chapter 3 of this tutorial.) 
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The tutorial is organized in the following way: this introduction is followed by a problem 
description which includes motivation, inputs and outputs, examples, and a description of the 
Java Application Programmer Interface which contains a generic implementation of the BBMB 
algorithm. The next chapter provides a description of the algorithm itself and a worked example. 
Chapter 4 provides the commented source code for the Java API, and Chapter 5 contains a 
demonstration of the API. 

2. Problem Description 

2.1 Motivation for Problem 
Many real-world resource allocation problems involve both hard and soft constraints. Hard 

constraints are constraints that always have to be satisfied, whereas soft constraints should be 
satisfied to the degree that is optimal for the overall system (this optimality is usually captured 
with a metric function). An example problem from the artificial intelligence domain involving 
both hard and soft constraints would be path planning with a minimum number of actions (metric 
function, or soft constraint) given initial and goal states (hard constraints) [1]. Myriad such 
problems exist in other fields as well, including biology, operations research, engineering design, 
and business operations. For example, protein structure/folding problems, task or resource 
scheduling, supply chain management, and design of complex systems each can involve a series 
of hard and soft constraints. (Note that in some cases other methods also exist for solving  these 
types of problems.) 

In addition to problems naturally including both hard and soft constraints, standard CSPs 
containing only hard constraints can be formulated as constraint optimization problems with 
minimization of the number of non-satisfied constraints (thus a “best” solution for an unsolvable 
CSP could be found). This makes all deterministic constraint processing problems tractable with 
valued CSP solution methods. 

The BBMB algorithm implemented here is based on both search and inference. It uses a 
depth-first-search branch-and-bound algorithm with forward-checking for satisfaction of the hard 
constraints. The heuristic function employed for a conservative estimate (upper bound for 
maximization) of the metric function is based on the ‘mini-bucket’ procedure described in more 
detail in Chapter 3. 

2.2 Problem Formulation 
This section shows the general problem formulation for valued constraint satisfaction 

problems alongside the formulation of an example problem, which will be referenced throughout 
this document. 
 

2.2.1 Example Problem: Antarctic Bases 
The example problem concerns a series of remote bases in the Antarctic. A radio network 

must be set up so that these bases can communicate with the other bases, and with scientists who 
venture out into the field. Because it is difficult to ship heavy equipment to such remote 
locations, the bases have only very basic radio equipment. Each base can receive any FM 
frequency, but can transmit at only one frequency; in addition, weather-ready radio transmitters 
are only available for a small number of frequencies. Power for the transmitters is also a limited 
resource: a fixed amount of power is available for sending radio transmissions each day (this is 
the same across all bases). Each available frequency has a different maximum range for a given 
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power level; therefore, some bases can transmit farther than others. Furthermore, for safety 
reasons (and for the purposes of scientific collaboration), certain bases must be able to 
communicate with certain other bases, and logistics hubs must transmit at certain frequencies so 
that they can communicate outside Antarctica. To maximize the amount of area that the scientists 
can explore, we seek to maximize the total area to which all bases can transmit. 

 

 
Figure 1: Antarctic bases (bases with red star are used in the example problem) 
 

In one possible scenario, we limit our network to a set of five bases distributed across the 
Antarctic continent (see map): McMurdo (M), Amundsen-Scott (A), Halley (H), Neumayer (N), 
and Mirnyy (Y). The available transmitters are at the frequencies 101, 103, and 105 MHz. Lower 
frequencies can transmit farther for the same power input. McMurdo base is the United States 
logistics hub, and therefore must be able to communicate with U.S. stations outside the Antarctic, 
which can only receive at 101 MHz. In addition, every base must be able to communicate with its 
nearest neighbor. 

The goal is to assign radio frequencies to these five bases such that all requirements (hard 
constraints) are satisfied; in other words, all nearest neighbors can communicate, McMurdo can 
talk to the ‘North’, etc.. In addition, we seek to maximize the explorable area of Antarctica by 
maximizing the total range of all transmitters across all bases. 

In the next sections, we present the framework for formulating general problems alongside 
the formulation for this example. 
 

2.2.2 Inputs and Outputs 
The inputs to a constraint optimization problem consist of variables, domains, hard 

constraints, and soft constraints. The input thus can be written as the 4-tuple 
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 ( X, D, Ch, Cs ) 
 

These inputs and other important parameters are defined as follows: 
 

• X = { x1, …, xn } are the variables. 
• D = { d1, …, dn } are the domains of the variables, and di = { ai,1, ai,2, … } is the set of 

allowed assignments to variable xi. 
• ã = { a1, …, an } is a set of valid assignments to the variables in X, and ãi = { a1, …, ai 

} is a partial assignment: a set of valid assignments to the first i variables in X. 
• Ch is a set of hard constraints (which must be satisfied in order to find a valid 

solution). Hard constraints are defined in terms of a scope (a set of variables) and a 
required relationship among the variables. (The example formulation, below, will 
make this clearer). 

• Cs = { F1, …, Fl } are the soft constraints, represented as a set of functions each 
defined over a subset of the variables in X (the scope of the constraint). Each function 
computes a value, or metric; the metrics found by each function are summed to 
generate the overall metric value for a given set of assignments. 

 
The goal is to maximize the global metric function, which is the sum of all functions in Cs, 

subject to the constraints Ch. Thus, the solution consists of a value for the global metric function 
and the set of variable assignments ão that generates this value. 
 

• F(ão) = maxãF(ã), where the global cost function is 

! 

F ( ˜ a ) = Fj ( ˜ a )

j=1

l

" . 

 
For the example problem, the variables are the various Antarctic bases, and their domains are 

the allowed transmission frequencies for each base. In most cases, the domain will contain the 
whole set of available weather-ready transmitter frequencies, but as stated above, some bases will 
be restricted only to frequencies at which receivers outside the Antarctic can communicate. This 
leads to the formulation 
 

• X = { M, A, H, N, Y } 
• D1 = { 101 }; D2-8 = { 101, 103, 105 } 

 
The hard constraints state that every base must be able to communicate with its nearest 

neighbor. In addition, the two U.S. bases must be able to communicate. Thus, the hard constraints 
link pairs of bases that must be able to talk to each other (the distances between bases are given in 
section 3.2). These pairs of bases form the scope of the constraint; we must now define the 
required relationship between the variables in the scope. In this case, the hard constraint is 
satisfied if and only if the two bases can talk to each other; in other words, if the two bases are (1) 
transmitting on different frequencies and (2) the transmission range of the first base is sufficient 
to reach the second base. Based on a given set of assignments to the variables, we can determine 
whether the constraint is violated using this relationship, which we sometimes term a 
‘consistency check’. Note that these binary hard constraints are ordered sets, so it is necessary to 
include both (M,A) and (A,M).  
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• Ch = { (M,A), (A,M), (M,Y), (Y,M), (H,N), (N,H) } 
• Consistency check:  

o True iff [a1 != a2] AND [range(a1) ≥ distance(a1, a2)]  Equation 1 
 

The soft constraints give the transmission range of each frequency for a given power level 
(recall that we seek to maximize this transmission range). We must also capture shrinking of the 
transmission range due to interference between nearby bases transmitting at the same frequency. 
We will assume for the purposes of this example that bases continually transmit. Therefore, if 
two nearby bases transmit on the same frequencies, the two transmissions will interfere anywhere 
that they overlap, and communication will be impossible in this overlapping region.  

In order to simplify the calculations in this example, we will use the linear overlap between 
frequencies rather than calculating the area of overlap (this will allow readers to follow the 
calculations without complex sector-area formulas). Thus, the soft constraint (below) has a scope 
that includes all the variables (bases), and a function that captures the linear transmission range of 
each base. The first term gives the transmission range of each frequency, and the second subtracts 
the overlapping range if two nearby stations transmit at the same frequency. This equation is the 
only soft constraint in this example problem. 
 

• Cs = { (
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Thus, the global cost function sums the total reach of transmitters for all base stations in 

Antarctica, accounting for interference. We seek to maximize this quantity. The outputs, 
therefore, will be the maximum possible reach of transmitters, and the set of assignments of 
frequencies to bases that generates this situation. A correct solution must include legal 
assignments to all variables (frequencies to bases), and provide the maximum possible total reach 
of Antarctic transmitters, while satisfying all the hard constraints. 

At this point, we have discussed how to set up and formulate valued constraint satisfaction 
problems. Before moving on to describe solution methods for these problems, we give a brief 
overview of the Java-based interface provided for solving these types of problems. 

2.3 Java Application Programmer Interface (API) 
The Java API for solving valued constraint satisfaction problems consists of five classes: 

 
• ValuedCSPSolver 
• Variable 
• Constraint 

o HardConstraint 
o SoftConstraint 

 
Each of these classes supplies specific methods for defining, initializing, or solving valued 

CSPs. They key to this API is that it is not specific to any particular problem formulation: all the 
methods included are applicable to generic variables sets, domain values, hard constraints, and 
soft constraints as long as these are consistent with the definition of a valued constraint 
satisfaction problem. This means that in order to solve an actual problem, the user is required to 
provide problem-specific classes which extend the generic classes in the API. For example, the 
generic class ‘HardConstraint’ has a method that checks whether the constraint is consistent. This 
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must be implemented in a problem-specific subclass; in the Antarctic bases problem, the 
consistency check would return true if the constrained bases can communicate, and false if they 
cannot. 
 

The following section provides a high-level description of the generic classes and their 
methods. In this section, we discuss only the public methods and classes that are necessary to run 
the solver. We discuss the internal methods only after the algorithm is described in section 3. The 
source code for the classes is shown with skeleton method definitions only. Detailed and 
commented source code for all classes is provided in Chapter 4 of this tutorial. Section 2.4 
describes the basics for generating and solving a valued CSP using this API. 
 

Note that the classes in this API do not contain any main methods; in order to solve a 
problem, a separate class needs to be created that contains a main method. 

2.3.1 Class ‘ValuedCSPSolver’ 
This class contains the primary methods for solving a valued CSP. A constructor is available 

to create a ValuedCSPSolver; the problem can then be initialized using the method “initialize()”. 
The variables, domains, and constraints of the CSP are thus instantiated in the ValuedCSPSolver 
object. A subclass that extends ValuedCSPSolver (such as AntarcticValuedCSPSolver) must be 
created so that a problem-specific initialize() method can be written to create the appropriate 
variables, domains, and constraints. 

After the initialization, the method “solveByBnbMiniBucket()” can be run in order to solve 
the valued CSP defined by the variables and constraints. The methods printProblem() and 
printResults() send text to the screen describing the problem formulation (variables and 
constraints) and the solution (value and assignments), respectively. The method 
setPrintSolutionProgress() is used to determine whether the steps of the algorithm are output to 
the screen. All other methods are class internal utilities or output functions. 
 
Class overview: 
 
public class ValuedCSPSolver { 
  

// CONSTRUCTOR 
 
public ValuedCSPSolver() 
 
// PRINT METHODS 
 
public void printProblem() 
public void printResults() 
public long getSolutionTime() 
 
// SOLUTION ALGORITHM 
 
public double solveByBnbMiniBucket() 
public void initialize() 

 
// UTILITIES 
 
public void setPrintSolutionProgress(boolean) 
public void setInitialConst(double) 
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} 

2.3.2 Class ‘Variable’ 
The class Variable is used to instantiate variable objects in the ValuedCSPSolver class; this is 

possible using two different constructors: one specifying only the variable name, and the other 
specifying the variable name and domain. 

The class Variable provides methods to assign domain values to the variable and save the 
current incumbent variable assignment. It also provides methods for manipulations of domains 
(pruning, reinstating, etc.) that occur during the branch and bound search. Finally, the class 
provides utility methods for output and class-internal operations. Please refer  to the full source 
code for more detailed descriptions of each method; extensive comments are included. 

Note that this class is independent of the problem formulation; it does not need to be extended 
for solving a specific problem. 
 
Class Overview: 
 
public class Variable { 
  

// CONSTRUCTORS 
 
public Variable(String name) 
public Variable(String name, LinkedList domain) 
 
// ASSIGNMENTS AND INCUMBENTS 
 
public Object getAssignment() 
public void assign(Object) 
public void assignFirstDomainValue() 
public void clearAssignment() 
public void saveAsIncumbent() 
 
// DOMAINS 
 
public void pruneDomain(Object) 
public void pruneDomain(LinkedList) 
public void setDomain(LinkedList) 
public void makeNextLevel() 
public void setNextDomain(LinkedList) 
public LinkedList getDomain() 
public LinkedList get BkpDomains() 
public boolean domainIsEmpty() 
 
// OTHER 
 
public void resetVariable(int level) 
 
// TO-STRING METHODS 
 
public String toString() 
public String toStringWDomain() 
public String toStringWAssgDomain() 
public String toStringWSolution() 

} 
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2.3.3 Class ‘Constraint’ 
The class Constraint is the abstract root class for hard and soft constraints. It provides 

methods for instantiating a constraint (constructors), for adding associated variables to the 
constraint, and utility methods. 

The class is extended by two specialized classes which are also problem-neutral: 
HardConstraint and SoftConstraint. 
 
Class Overview: 
 
public abstract class Constraint { 
 

// CONSTRUCTORS 
 
public Constraint() 
public Constraint(LinkedList variables) 
 
// VARIABLES 
 
public void addVariable(Variable) 
public LinkedList getVariables() 

 
} 
 

2.3.4 Class HardConstraint 
This class extends Constraint and provides specialized methods for creating a hard constraint, 

for adding variables to a hard constraint, and for checking the consistency of the hard constraint. 
Of these methods, only the method “checkPairwiseConsistency()” must be implemented by a 
problem-specific subclass of HardConstraint. 

Note that hard constraints are restricted to two variables only (binary constraint). 
 
Class Overview: 
 
public class HardConstraint extends Constraint { 
  

// CONSTRUCTORS 
 
public HardConstraint() 
public HardConstraint(LinkedList variables) 
public HardConstraint(Variable v1, Variable v2) 
 
// VARIABLES 
 
public void addVariable(Variable) 
 
// CONSISTENCY 
 
public boolean checkConsistency() 
protected boolean checkPairwiseConsistency(Variable v1, Variable v2) 

} 
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2.3.5 Class SoftConstraint 
This class extends Constraint and provides constructors and a method for evaluating the soft 

constraint given a partial or a full variable assignment. The evaluation method must be 
implemented by a problem-specific subclass of SoftConstraint. 
 
Class Overview: 
 
public class SoftConstraint extends Constraint { 
 

public SoftConstraint() 
public SoftConstraint(LinkedList) 
 
public double evaluate() 

} 
 

2.3.6 Problem-specific Classes 
As described in Sections 2.3.1 – 2.3.5, the following classes need to be extended in problem-

specific subclasses in order to define problem-dependent methods: 
 

• ValuedCSPSolver (initialize() method) 
• HardConstraint (checkPairwiseConsistency() method) 
• SoftConstraint (evaluate() method) 

 
Commented source code examples for extension classes are provided in Chapter 5 of this 

tutorial. 
Please note that the solver assumes a maximization problem. In order to perform 

minimization, simply ensure that the evaluate() method returns the appropriate result multiplied 
by -1. 
 

2.4 Example: Using the API 
After writing the problem-specific subclasses for a given problem, including the initialize() 

method, a new class must be created with a main method to run the solver. The following code 
provides a sample ‘Tester’ class that runs the solver for a problem ‘MyVcsp’. (More complete 
code examples are provided in section 7, and the output from a run of the solver can be found in 
section 3.3). 

Again, please note that the solver assumes a maximization problem. In order to perform 
minimization, simply ensure that the evaluate() method returns the appropriate result multiplied 
by -1. 
 
public class Tester { 
 

public static void main(String[] args) { 
 
// create problem-specific solver object 
MyVcspValuedCSPSolver mySolver = new MyVcspValuedCSPSolver(); 
 
// initialize the problem (define variables, domains, and constraints) 
mySolver.initialize(); 
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// tell the solver whether to print the algorithm steps 
mySolver.setPrintSolutionProgress(true); 
 
// print the problem definition to the screen 
mySolver.printProblem(); 
 
// run the solution algorithm 
mySolver.solveByBnbMiniBucket(); 
 
// print the results to the screen 
mySolver.printResults(); 

} 
} 

3. Method Description: Branch & Bound Mini-Bucket (BBMB) 

3.1 Introduction of Big Ideas 

3.1.1 Basic Search for Constraint Optimization Problems 
 
Backtrack Search Pruned by Hard Constraints 

A straightforward method for solving a constraint optimization problem ( X, D, Ch, Cs ) is 
branch-and-bound search based on basic backtrack search: a backtrack search is performed for all 
variables X and over all domains D in a depth-first order, which essentially examines all possible 
assignments of domain values to variables. The hard constraints Ch are used to eliminate 
inconsistent solutions as the backtrack search progresses (this can be accomplished using 
forward-checking in order to reduce complexity). Once a complete and consistent assignment is 
found, the total metric function is evaluated based on the soft constraints Cs, and compared to the 
incumbent U – the “best solution so far”. If the new solution is better (i.e. smaller in the case of 
minimization), it is saved as the new incumbent. The search does not stop when the first complete 
and consistent assignment is found, because this is not necessarily the global optimum in terms of 
the metric functions (soft constraints). Search continues until the entire search tree has been 
explored; at that point, it is clear that the incumbent solution is the optimum. 
 
Backtrack Search Pruned by Hard and Soft Constraints 

The method outlined above is a basic backtracking search, augmented only by the use of 
forward-checking to prune sets of assignments that are inconsistent with the hard constraints. In 
other words, if a partial assignment generated in the search process is inconsistent, it is pruned, 
and the search backtracks. However, we can also take advantage of the soft constraints to prune 
the search tree even further. For each consistent partial assignment, the terms of the soft 
constraints’ metric functions can be evaluated and summed into an intermediate metric function. 
If, in the case of minimization, the value of the intermediate metric function is higher than that of 
the incumbent, then the partial assignment is pruned and the search backtracks. Thus entire sub-
trees of the search tree can be pruned effectively. As before, if a solution is found that has a lower 
total metric than the incumbent, then the incumbent is updated with the new total cost. The 
optimum solution is the one which defined the final incumbent. 
 
Adding Heuristic Functions 
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The basic method described here for pruning based on soft constraints only uses the metric 
value defined by the already-instantiated variables to prune the search tree. However, we could 
prune more sub-trees if we had some method for estimating the metric value of the remaining un-
instantiated variables. Such an estimation method, called a heuristic function, must be chosen 
carefully so that branches are not pruned incorrectly due to inaccurate estimates. In minimization 
problems, it is clear that if a heuristic function never overestimates the metric value from the 
unassigned variables, we can always prune branches with a higher metric than the incumbent. 
(For maximization, we require a heuristic that never underestimates). The implementation 
described above could therefore be viewed as using a heuristic function that is always equal to 
zero, which is always an admissible heuristic because it never overestimates. However, this 
heuristic does not provide any additional reduction in complexity. In the following sections we 
describe heuristics that produce a more accurate lower bound and thus allow for more effective 
pruning, reducing the complexity of branch-and-bound search. 

3.1.2  Branch & Bound Search Using Effective Heuristic Functions 
As stated above, an admissible heuristic function must never overestimate the total metric 

value in a minimization problem. The ideal heuristic function would provide an accurate lower 
bound (for minimization) of the total metric function given a partial assignment. A 
straightforward way for achieving this is to use the following relationship: 

( ) ( )( ) ( ) ( )xCxCxCxC
2121

minminmin +!+    Equation 3 

For given soft constraints / cost functions C1 and C2 , the lower bound of the minimum of 
C1+C2 is the sum of the minima of the individual soft constraints (see Figure 2). Thus, the 
minimum is never overestimated, and the heuristic is admissible. This principle is attractive, 
because it removes the constraint that the independent variables of C1 and C2 have to have the 
same values. Because this constraint is removed, it is easier to carry out the minimization. 
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Figure 2: Bounding principle from Equation 3 for two quadratic functions 

 
This principle can be generalized for all soft constraints in a valued CSP, so that given a 

consistent partial assignment, the lower bound on the minimum total metric can be computed 
summing the global minima of all the soft constraints. The bounding functions utilizing this 
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principle are called “first-choice” bounding functions [1]. Note that for the computation of the 
global minima of the individual soft constraints, the hard constraints need to be satisfied. 
 

Another approach for providing an accurate lower bound on the metric function given a 
partial assignment would be to compute the actual total minimum metric value that is reachable 
given the current partial assignment. Pruning would then occur if the minimum of the total metric 
is higher than the incumbent minimum. This could be achieved by using an inference algorithm 
called “bucket elimination” [1]. For bucket elimination, the individual soft constraints are 
organized in groups (called “buckets”) according to a variable ordering: all soft constraints 
mentioning the first variable in the ordering are placed in the first bucket. All remaining soft 
constraints that include the second variable as independent variable are placed in the second 
bucket, and so forth. Thus, an optimization operation over only one variable can be performed 
separately for each bucket; the bucket variable is eliminated by expressing it as a function of the 
remaining non-initiated variables. 

The optimization result is a function of the variables that are not initiated in the bucket (much 
like when solving, e.g., a duplex integral). The resulting function is placed in the next lower 
bucket containing one of the non-initiated variables in the function. This top-down process is 
repeated until the lowest bucket is reached, and a numerical value can be calculated for the last 
variable. Going through the buckets in bottom-up manner, numerical values for all the other 
variables can now be calculated. 

Note that the variable ordering used for generating the buckets has significant influence on 
the performance of bucket elimination. Methods for dynamic variable ordering are not described 
in detail here, but are available in literature for determining optimal variable orderings [1].  

3.1.3 Mini-Bucket Elimination as Heuristic Function 
Both the first-choice algorithm and bucket elimination have advantages and disadvantages: 

first-choice produces a fairly inaccurate lower bound, and requires the optimization of all soft 
constraints for every call of the heuristic function. Bucket elimination provides the actual 
reachable minimum given a partial assignment of variables, but requires a variable elimination 
procedure and a subsequent variable calculation procedure (for details of both methods, please 
refer to [1]).  

The mini-bucket elimination algorithm represents an attempt to combine the advantages of 
both these methods (increased accuracy) while trying to avoid the disadvantages (runtime 
complexity). Mini-bucket elimination also uses buckets as defined for bucket elimination above. 
Inside the buckets, it uses the principle from Equation 3 eliminate the identity constraints 
between the independent variables of two soft constraint functions in a bucket. This avoids the 
runtime complexity of pure bucket elimination at the cost of reduced accuracy (lower bound 
instead of actual minimum). Essentially, the mini-bucket elimination heuristic estimates the 
minimum (or maximum) metric value for the unassigned variables by solving minimization sub-
problems over one or several of the remaining variables (rather than all of them at once), thereby 
trading accuracy for the reduced complexity of smaller, easier minimization problems. 

The example presented in the following section walks through the Antarctic bases example 
using branch-and- bound search with forward checking and a heuristic function based on mini-
bucket elimination. Section 3.3 provides the associated pseudocode. 
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3.1.4 A Note on the Java Implementation of Mini-Bucket Heuristics 
This section briefly discusses the Java implementation of the mini-bucket heuristic (which is 

provided with this tutorial). As noted above, the mini-bucket heuristic is based on the principle 
that solving a minimization or maximization problem is easier with a smaller number of 
variables; however, nothing is specified about the choice of the exact number of variables. In this 
tutorial, we restrict ourselves to mini-buckets containing only one variable. While this may not be 
the optimal choice of mini-bucket size for every problem, it ensures consistency throughout the 
tutorial, makes examples much easier to follow, and simplifies the code to a more understandable 
level. It will be straightforward to extend the heuristic function ( costToGo() method ) so that it 
can calculate maximums over a larger number of variables. 

 

 

Figure 3: Antarctic Bases Network 

3.2 Algorithm Demonstration: Arctic Base Communications 
In order to demonstrate the algorithm on a simple example, we utilize the Antarctic base 

communications problem given in section 2.2.1. Recall that we consider five Antarctic bases: 
McMurdo (M), Amundsen-Scott (A), Halley (H), Neumayer (N), and Mirnyy (Y). Only three 
frequencies are available: 101, 103, and 105 MHz. The hard constraints require that McMurdo 
communicate on 101 MHz (with stations outside Antarctica), and all bases must be able to 
communicate with their nearest neighbors. The resulting constraints are shown in Figure 2: bold 
lines indicate that the connected bases must be able to communicate with one another. The 
distances between bases are shown in the diagram, and the ranges (transmission distances) for 
each frequency are: 
 

• range(101) = 6 
• range(103) = 4 
• range(105) = 2 
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Overlap can be calculated by summing the ranges of two bases and subtracting the distance 
between them. 

Initialize 
The inputs to the algorithm are thus: 

 
• An ordered set of variables X = { M, A, H, N, Y } with associated domains Di 
• A set of hard constraints C = { (A,M), (M,Y), (H,N) } 
• A soft constraint function F = f(X) = total range – total overlap 

 
Throughout this example, we will represent the search tree as a table, which allows us to 

show changes in the domains of all variables as the search progresses. Thus, view the table below 
as the start of a ‘sideways’ tree, with the current (first) node on the left, with a heavy border. The 
domains of the variables are printed in the associated boxes in plain text. Assigned values are 
bolded and underlined, while pruned values are crossed out. 
 
 M A H N Y 
1 101  101,103,105 101,103,105 101,103,105 101,103,105 
 

Assign Value 
In order to implement a depth-first search, we loop through all the variables, beginning with 

the first element in the ordered set X. 
 
 x1 = M 
 

All original variable domains are saved so that they can be restored later. Unless the 
variable’s domain is empty, the variable is assigned a value from its domain (which is then 
removed from the domain). In our example, we have 
 
 DM,t-1 = { 101 } 
 M = 101 
 DM,t = { } 
 
 M A H N Y 
1 101 101,103,105 101,103,105 101,103,105 101,103,105 
 

Forward-Checking 
The next step is to forward-check, or prune other variables’ domain values that are 

inadmissible due to hard constraints. Thus, all variables connected by hard constraints to the 
current variable are examined for consistency. In this case, the relevant constraints are those 
whose scopes include the current  variable M: 
 
 (A,M), (M,Y) 
 

Bases M and A will not be able to communicate if A is assigned 101 (due to transmission 
interference), so that value is deleted from the domain of A. The same logic leads the value 101 
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to be deleted from the domain of Y. Finally, the value 105 is deleted from A and Y, because the 
range of 105 is not sufficient to reach M in each case. This process eliminates all domain values 
that are inconsistent with the current assignment based on the hard constraints. 
 
 M A H N Y 
1 101 101,103,105 101,103,105 101,103,105 101,103,105 
 

Metric Heuristic 
The next step is to estimate the total metric function (from the soft constraints). The estimated 

metric value will give the maximum possible metric that the current set of partial assignments can 
provide. Because this is a maximization problem, if this value is less than a previously found 
solution, there is no need to proceed further down this branch of the search tree. At the moment, 
there is no previously found, or incumbent, solution, but we still estimate the metric for 
consistency. 

First, the metric-so-far (metric based on the current partial assignment) is found from the 
variables already assigned, by applying Equation 2 to the partial assignment of variables. In this 
case, we have only one variable, so there is no overlap, and therefore the metric is simply the 
total transmission range 
 
 f1 = range(M) = 6 
 

Second, the metric-to-go (an estimate of the maximum metric value obtainable from the 
unassigned variables) is estimated based on the mini-bucket heuristic. It is essential that this 
process always overestimate the true metric-to-go. Therefore, the estimated metric can be 
calculated by the sum of the maximum possible ranges of all remaining variables (taking into 
account any overlap with the already assigned variables). This is much simpler (though less 
accurate) than calculating the maximum range of all remaining assignment sets, which would 
require maximization over a number of different variables. This method only requires selecting 
the maximum value from the domain of a single variable. In this case, the variables A, H, N, and 
Y remain unassigned. Recall that the maximum range is the minimum frequency; however, we 
must take into account overlap with the current assignments. therefore, even though assigning H 
a frequency of 101 appears to provide the maximum range, the overlap with transmissions (at 
101) from base M reduces the transmission range significantly, so that the choice of 103 actually 
provides a higher metric value. Again, the metric value is calculated from Equation 2. These 
values are summed so that 
 
 g1 = max( F1(A) )+max( F1(H) )+max( F1(N) )+max( F1(Y) ) 
 
 M A H N Y 
1 101 

f = 6 
g = 16 

101,103,105 
max: 4 

101,103,105 
max: 4 

101,103,105 
max: 4 

101,103,105 
max: 4 

 
The final step of this segment is to check the total cost function f+g against the incumbent 

solution. However, there is no incumbent solution so we proceed and iterate the whole process 
with the next variable. The incumbent solution will not be set until the first complete, consistent 
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assignment set is generated; in other words, until the search tree reaches an assignment of the 
variable ‘Y’. 
 

Second Iteration 
The second iteration assigns a value (103) to the variable A, and performs forward-checking 

using the constraint (A,M). This constraint has already been satisfied in the previous step, so no 
pruning is necessary. The cost-so-far is easily found from the ranges of M and A, and the cost 
remaining is the sum of the maximum metric values for H, N, and Y. Note that in this case, the 
maximum value for H comes from the assignment H=105, because assignments of 101 or 103 
would each overlap significantly with transmissions from bases M and A. We see this effect in 
the maximum metric from Y, which must be assigned 103; it overlaps with base A, so its 
transmission range is reduced from 4 to 1.2. 
 
 M A H N Y 
1 101 

f = 6 
g = 16 

101,103,105 
max: 4 

101,103,105 
max: 4 

101,103,105 
max: 6 

101,103,105 
max: 4 

2  103, 105 
f = 10 
g = 6 

101,103,105 
max: 2 

101,103,105 
max: 2 

103 
max: 1.2 

 

Remaining Iterations 
The process continues in the same manner. In step 3, the value 101 is pruned from the domain 

of N, due to the constraint (H,N). The cost-so-far is calculated from the sum of the ranges of M, 
A, and H, minus the overlap between M and H, which are at the same frequency. 
 

The remaining steps can be followed in the output from the code, given in the next section 
(3.3). The algorithm continues assigning variables until it reaches step 5, which provides a 
consistent solution with a cost value of 10.3. This then becomes the incumbent. Because there are 
no remaining values in the domain of Y, the algorithm backtracks to N, restoring the domain of Y 
to its state before pruning at level 4 (the last step in which N was assigned a value).  
 

The value of f+g is calculated to be 13.0, and compared to the incumbent (10.3). If it were 
less than the incumbent, it would be pruned because it could never generate a solution value 
higher than that already found. However, since the estimate is greater than the incumbent, the 
search proceeds normally. With the subsequent assignment of 103 to Y, we find a second 
consistent solution. The metric value of 13 is higher than the incumbent, so 13 becomes the new 
incumbent solution. 
 

Search continues in the same manner until the entire search tree is exhausted. In this manner, 
the true optimal solution is found. 

3.3 Complete Algorithm Run: Antarctic Base Communications 
This section shows a complete run of the branch-and-bound search with mini-bucket 

heuristics on the Antarctic base communications example. A basic explanation of the workings of 
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the algorithm is provided below the screen output; please refer to the previous section (3.2) for a 
more detailed explanation and walk-through of the algorithm. Also, please note that the term 
“cost” is used in place of “metric” in the code and in the screen output below. 
 
Variables: 
     M, A, H, N, Y, 
Domains: 
     (M: 101), (A: 101 103 105), (H: 101 103 105), (N: 101 103 105), (Y: 101 103 105), 
Hard Constraints: 
     (M A ), (A M ), (M Y ), (Y M ), (H N ), (N H ), 
Soft Constraints: 
     (M A H N Y ), 
 
Level 0 (before pruning) 
     (M: *101*) (A: 101 103 105) (H: 101 103 105) (N: 101 103 105) (Y: 101 103 105) 
Level 0 (after pruning) 
     (M: *101*) (A: 103) (H: 101 103 105) (N: 101 103 105) (Y: 103) 
     Cost So Far: 6.0 
     Cost To Go:  16.0 
 
Level 1 (before pruning) 
     (M: *101*) (A: *103*) (H: 101 103 105) (N: 101 103 105) (Y: 103) 
Level 1 (after pruning) 
     (M: *101*) (A: *103*) (H: 101 103 105) (N: 101 103 105) (Y: 103) 
     Cost So Far: 10.0 
     Cost To Go:  5.199999999999999 
 
Level 2 (before pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: 101 103 105) (Y: 103) 
Level 2 (after pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: 103 105) (Y: 103) 
     Cost So Far: 9.8 
     Cost To Go:  3.1999999999999993 
 
Level 3 (before pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: *103* 105) (Y: 103) 
Level 3 (after pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: *103* 105) (Y: 103) 
     Cost So Far: 10.100000000000001 
     Cost To Go:  0.1999999999999993 
 
Level 4 (before pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: *103* 105) (Y: *103*) 
Level 4 (after pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: *103* 105) (Y: *103*) 
     Cost So Far: 10.3 
     Cost To Go:  0.0 
Incumbent assigned: 10.3 
 
Level 3 (before pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: *105*) (Y: 103) 
Level 3 (after pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: *105*) (Y: 103) 
     Cost So Far: 11.8 
     Cost To Go:  1.1999999999999993 
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Level 4 (before pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: *105*) (Y: *103*) 
Level 4 (after pruning) 
     (M: *101*) (A: *103*) (H: *101* 103 105) (N: *105*) (Y: *103*) 
     Cost So Far: 13.0 
     Cost To Go:  0.0 
Incumbent assigned: 13.0 
 
Level 2 (before pruning) 
     (M: *101*) (A: *103*) (H: *103* 105) (N: 103 105) (Y: 103) 
Level 2 (after pruning) 
     (M: *101*) (A: *103*) (H: *103* 105) (N: 105) (Y: 103) 
     Cost So Far: 9.100000000000001 
     Cost To Go:  2.3999999999999986 
Pruned! Est. cost of 11.5 is less than incumbent 13.0 
 
Level 3 (before pruning) 
     (M: *101*) (A: *103*) (H: *103* 105) (N: *105*) (Y: 103) 
Level 3 (after pruning) 
     (M: *101*) (A: *103*) (H: *103* 105) (N: *105*) (Y: 103) 
     Cost So Far: 11.100000000000001 
     Cost To Go:  0.3999999999999986 
Pruned! Est. cost of 11.5 is less than incumbent 13.0 
 
Level 4 (before pruning) 
     (M: *101*) (A: *103*) (H: *103* 105) (N: *105*) (Y: *103*) 
Level 4 (after pruning) 
     (M: *101*) (A: *103*) (H: *103* 105) (N: *105*) (Y: *103*) 
     Cost So Far: 11.5 
     Cost To Go:  0.0 
Pruned! Est. cost of 11.5 is less than incumbent 13.0 
 
Level 2 (before pruning) 
     (M: *101*) (A: *103*) (H: *105*) (N: 105) (Y: 103) 
Level 2 (after pruning) 
     (M: *101*) (A: *103*) (H: *105*) (N:) (Y: 103) 
     Cost So Far: 12.0 
     Cost To Go:  1.1999999999999993 
 
Search completed! Best solution: 13.0 
 

Initially, the problem description is printed on the screen showing problem variables, 
associated domains, hard constraints and their associated variables, and soft constraints and their 
associated variables (in this case there is only one soft constraint which is a function of all 
variables). Then a series of outputs similar in form follows: these are the individual search steps 
of the branch and bound algorithm. “Level” denotes the layer of the search tree the algorithm is 
currently at; each level corresponds to one variable and its assignments. Level 0 corresponds to 
the first variable. 
 

Cost-so-far denotes the metric value (sum of soft constraint function evaluations) calculated 
based on a partial assignment to variables. Cost-to-go is the value of the bounding (and therefore 
admissible) heuristic function for the sub-tree of unassigned variables given the current partial 
variable assignment. In addition to the two cost components of the branch and bound evaluation 
function, the current consistent domain values for all variables are printed out before and after 
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forward-checking, and the currently assigned domain values are indicated by a star at the start 
and end. Also shown is the action of pruning a variable assignment when the sum of the cost-so-
far and the cost-to-go are lower than the current best solution (the incumbent). 
 

This output block is repeated for each step in the search until the search tree is exhausted (all 
variable domains exhausted); the search terminates with the best values for the metric function 
found (which is the case here), or a statement that the search failed otherwise. 

3.4 Pseudocode 
The process described above can be distilled into general ‘pseudocode’, given below. 
 
given 
 variables X = { x1 … xn } 
 domains Dx = { d1 … dm } 
 hard constraints C = { c1 … cp } 
 soft constraints F = { f1 … fq } 
 
for all variables xi = x1 to xn 
  
 assign value from domain 
 save backup domains for all variables Bi = { Di } 
 if domain Dx

i is empty, then backtrack: return to previous variable 
 assign next domain value to current variable xi = dnext 
 remove assigned domain value dnext from domain Dx

i 
 
 forward-check: prune by hard constraints 
 for all hard constraints ck = c1 to cp 
  if ck references xi 
   if ck is not consistent 
    remove the inconsistent value from the domain of the referenced variable 
   end if 
  end if 
 end for 
 
 calculate cost-so-far 
 for all soft constraints fl = f1 to fq 
  fi += fl(x1…xi) 
 end for 
 
 calculate cost-to-go 
 for all soft constraints fl = f1 to fq 
  for all unassigned variables xi’ = xi+1 to xn 
   for all values in the domain dj = d1 to dm 
    if gl(di’) > previously found gl(xi’), save max( gl(xj) ) = gl(di’) 
   end for 
   gi += max( gl(xj) ) 
  end for 
 end for 
 
 prune by heuristic 
 if f+g < incumbent, then backtrack: assign new domain value 
end for 
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4. API Java Implementation 
This chapter is intended as a reference for the implementation of the classes implemented in 

the Valued-Constraint-Satisfaction API. In order to make this tutorial easier to read, the source 
code for the API is provided in Appendix 7.1 at the end of the tutorial. Information on problem-
specific classes is provided with the examples in Chapter 5 and in Appendices 7.2 and 7.3. The 
source code is commented richly and should be the primary source of information on how the 
classes are implemented. 

 
We consolidate here a few notes (already discussed in earlier sections) pertaining to the use of 

the Java API provided with this tutorial.  
In order to use the API to solve a specific valued CSP, several generic subclasses need to be 

extended and certain methods implemented. As described in Chapter 2, the generic classes are 
implemented in a problem-neutral way; in order to solve an actual problem, problem-specific 
versions of certain classes have to be supplied. The methods that must be implemented are: 

•  
• ValuedCSPSolver (initialize() method) 
• HardConstraint (checkPairwiseConsistency() method) 
• SoftConstraint (evaluate() method) 
 

Section 2.3 provided a top-level introduction to these classes and the methods provided within. 
Also note that the implementation assumes a maximization problem. In order to solve a 

minimization problem, simply return negative values (multiply the metric/cost value by -1). 
In order to run the solver, a new class must be written that contains a main method. Examples 

showing how to write this method are given in section 2.4. 
Again, the source code is the best source of information on how the algorithm is 

implemented. The comments are intended to explain how the algorithm works step-by-step. This 
code is also reprinted in section 5. 

5. API Demonstration 
In order to provide maximum flexibility to the user, the implementation of a valued constraint 

satisfaction problem as described in this tutorial consists of problem-specific classes and generic 
classes for solving the valued CSP. Section 5.1 describes how to load and use the generic classes, 
and Sections 5.2 and 5.3 provide examples for problem-specific classes. 

5.1 Loading and Using the ‘Valued_CSP’ Package 
As described in Section 2.3, there are five generic classes in the API: 
 
• ValuedCSPSolver 
• Variable 
• Constraint 

o HardConstraint 
o SoftConstraint 

 
These classes form a package called ‘Valued_CSP’ (see source code in the Appendix (7)). In 

order to be able to use the package, it has to be imported for all problem-specific classes using the 
following command (see source code in Sections 5.2 and 5.3): 
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import Valued_CSP.*; 

 
In order to be able to access the files in the package, a folder / subdirectory called 

‘Valued_CSP’ which contains all the classes in the package has to be present in the same 
directory as the problem-specific source classes.  

In order to actually run the solver, a main class or a Junit test class has to be provided, and an 
object of the problem-specific ValuedCSPSolver class has to be instantiated (see examples 
below). 
 

5.2 Source Code for Antarctic Communications Example 
The Antarctic communications problem has been described in detail in the preceding 

Chapters. Here we provide a description of the source code for this problem as an example for 
implementing and solving a particular problem using the Valued CSP API. The actual source 
code is shown in Appendix 7.2. 
 

The example implementation consists of five user-defined classes: 
 
AntarcticValuedCSPSolver 

This class extends ValuedCSPSolver from the API and provides a problem-specific version 
of the method initialize(). In this method, the variables, their domains, the hard constraints, and 
the soft constraints are defined and initialized. The variables are the Antarctic bases, their domain 
values are frequencies stored as String objects (for detailed example description, see Chapter 3 
above). Hard constraints are defined between appropriate variables. There is only one soft 
constraint, which is a function of all the variables. 
 
AntarcticHardConstraint 

This class extends HardConstraint from the API provides a problem-specific version of the 
method checkPairwiseConsistency(). Hard constraints are defined for pairs of bases that need to 
be able to talk to each other. The method returns true if at least one of the two variables is 
unassigned. The method returns false if the bases use the same frequency, if their mutual ranges 
are smaller than the distances between them, and if McMurdo (“M”) is not assigned the 
frequency 101. 

In order to carry out the evaluations of these constraints, methods for calculating range and 
distance are used; these methods are provided by the problem-specific class AntarcticUtilities. 
 
AntarcticSoftConstraint 

This class extends SoftConstraint from the API; it provides a problem-specific version of the 
method evaluate(). The evaluation function returns the sum of all the exploration ranges of the 
bases minus the overlap between bases. 

If a variable (which represents a base) is unassigned, the evaluation function does not 
calculate a range for it, and does not subtract any overlap. 
 
AntarcticUtilities 

This class does not extend any of the API classes; it is an abstract class, purely user-defined 
and provides methods for calculating the communications range of a base given a frequency and 
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for looking up the distance between two bases. These methods are used by the problem-specific 
soft and hard constraints. 

For many valued constraint satisfaction problems it might be desirable to separate the  
calculation of numerical data in a separate class in order to simplify the classes for soft and hard 
constraints and to facilitate changing the data at a later point in time. 
 
AntarcticTester 

None of the classes discussed thus far have contained a main method. The class Tester 
contains a main class and is used to run the Antarctic communications example. In the main 
class, an object of class AntarcticValuedCSPSolver is defined and initialized. After that, the 
solution algorithm is called for solving the problem. 

The output from running the Antarctic communications example is provided in Section 3.3 
above. For more detailed information on the implementation, please refer to the documented 
source code in Appendix 7.2. 

5.3 Source Code and Benchmark Analysis for Uncapacitated 
Warehouse Location Problem (UWLP) 

The Antarctic communications example above is intended to provide a motivating and easily 
understandable introduction to formulating and solving a real-world valued CSP. However, 
because it is not easily scalable, another example problem of somewhat more academic nature is 
provided here: the so-called Uncapacitated Warehouse Location Problem (UWLP). 

5.3.1 Problem Description 
The UWLP is concerned with determining the optimal location for warehouses given w 

potential locations and the associated cost (negative revenue) of maintaining a warehouse at that 
location. In addition, there are s stores which need to be supplied by the warehouses; each store is 
supplied by exactly one warehouse (whereas one warehouse can supply multiple stores). The 
added cost (negative revenue) for supplying a store from a warehouse is a function of the 
warehouse location and the store location. 

The UWLP presented here is simplified so that it has only binary constraints between the 
warehouses and the stores as opposed to n-ary constraints used in the generic UWLP formulation 
[4]; this formulation was inspired by [3]. 
 

The variables for this problem are the warehouses and the stores. For the warehouses, the 
domains consist of  “Y” (the warehouse is operated) and “N” (the warehouse is not operated). For 
the store variables, the domains consist of the names of the warehouses (independent of their 
existence). For w warehouses and s stores there are w + s variables. 
 

The hard constraints for this problem enforce that in order to be supplied from a particular 
warehouse, that warehouse must be operated (“Y”). If not, the warehouse name is pruned from 
the store domain. According to this definition, there are w * s hard constraints between the w 
warehouses and the s stores. 
 

The goal is the minimization of the cost for supplying the s stores from at most w different 
warehouses. As our algorithm provides a tool for maximization, the goal is reformulated for 
maximizing the negative cost (revenue). The metric function / soft constraint is therefore the sum 
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of all the negative costs arising from operating warehouses and due to supplying a particular store 
from these warehouses. 

For the problem formulation provided here, only one soft constraint is required. 
 

A short description of the problem specific classes is provided here, while the commented 
source code is provided in Appendix 7.3. 
 
Class UWLP_ValuedCSPSolver 

This class extends ValuedCSPSolver from the API. A problem-specific version of the 
initialize() method is provided as well as a method for setting the number of warehouses and 
stores: setNumberWarehousesAndStores(). In the initialize method, the variables, hard, and soft 
constraints are defined. 
 
Class UWLP_HardConstraint 

This class extends HardConstraint from the API. It provides a customized 
checkPairwiseConsistency() method for the UWLP. The constraint is always initialized with one 
warehouse variable and one store variable. The constraint returns true if at least one of the two 
variables is unassigned. It returns false if the warehouse variable is assigned “N” and the store 
variable is assigned the name of the warehouse variable. 
 
Class UWLP_SoftConstraint 

This class extends SoftConstraint from the API and provides a user-specific method 
evaluate(). As mentioned above, the UWLP problem formulation provided here utilizes only one 
soft constraint / metric function. 

The method evaluate() returns a double value corresponding to the current overall revenue 
(negative cost). Due to the way the problem was formulated, this value will always be smaller or 
equal zero. 

The method evaluate() only calculates the revenue of a warehouse if the warehouse is 
operated (i.e. assigned “Y”), and it only calculates the revenue for a store-warehouse combination 
if both variables are assigned. 
 
Class UWLP_Tester 

Again, a class is required that contains a main method for running the problem (alternatively 
a Junit test class could be used). The class UWLP_Tester provides the main method. In this 
method, an object of class UWLP_ValuedCSPSolver is created. Then the number of warehouses 
and stores is specified using the method setNumberWarehousesAndStores(). After that, the 
problem is initialized using initialize(), and then the solver is run. Finally, the results are printed 
to the screen using printResults(). 

Note: the ability to specify the number of warehouses and stores make the problem scalable 
which is important for benchmarking. 
 

For details of the code and instantiating and solving a problem in the UWLP_Tester method, 
please refer to the commented source code in Appendix 7.3. 

5.3.2 UWLP Example Run 
One of the motivating factors behind our use of the UWLP example in this tutorial is that the 

problem is scalable; in other words, we can use the UWLP_Tester class to specify the number of 
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variables, so the problem can be run for different test cases. As for the Antarctic communications 
problem, a sample screen output is provided here to show the working of the algorithm. The 
example run shown here is for 2 warehouses and 2 stores, which is one of the simplest cases for 
which pruning can occur without pruning the entire variable domain of a store. 
 

The first output is the problem definition showing variables and domains, as well as hard and 
soft constraints. Note that the warehouse variables “W” have domains {“Y”, ”N”}, whereas the 
store variables “S” have domains that consist of the warehouse names. Hard constraints always 
exist between one warehouse and one store, and the soft constraint includes all stores and 
warehouses as variables. 
 

After the problem definition, the algorithm starts going through the tree. If a warehouse is 
assigned “N”, then the warehouse name is pruned from all store domains during the forward 
checking step. The cost-so-far and cost-to-go functions are always smaller or equal 0. Below the 
final solution, the solution time in milliseconds is provided for benchmarking purposes. 
 
Screen output: 
 
PROBLEM DEFINITION 
Variables: 
     W0, W1, S0, S1, 
Domains: 
     (W0: Y N), (W1: Y N), (S0: W0 W1), (S1: W0 W1), 
Hard Constraints: 
     (W0 S0 ), (W1 S0 ), (W0 S1 ), (W1 S1 ), 
Soft Constraints: 
     (W0 W1 S0 S1 ), 
 
Level 0 (before pruning) 
     (W0: *Y* N) (W1: Y N) (S0: W0 W1) (S1: W0 W1) 
Level 0 (after pruning) 
     (W0: *Y* N) (W1: Y N) (S0: W0 W1) (S1: W0 W1) 
     Cost So Far: -10.0 
     Cost To Go:  -40.0 
 
Level 1 (before pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: W0 W1) (S1: W0 W1) 
Level 1 (after pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: W0 W1) (S1: W0 W1) 
     Cost So Far: -22.0 
     Cost To Go:  -40.0 
 
Level 2 (before pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W0* W1) (S1: W0 W1) 
Level 2 (after pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W0* W1) (S1: W0 W1) 
     Cost So Far: -41.0 
     Cost To Go:  -21.0 
 
Level 3 (before pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W0* W1) (S1: *W0* W1) 
Level 3 (after pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W0* W1) (S1: *W0* W1) 
     Cost So Far: -62.0 
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     Cost To Go:  0.0 
Incumbent assigned: -62.0 
 
Level 3 (before pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W0* W1) (S1: *W1*) 
Level 3 (after pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W0* W1) (S1: *W1*) 
     Cost So Far: -64.0 
     Cost To Go:  0.0 
Pruned! Est. cost of -64.0 is less than incumbent -62.0 
 
Level 2 (before pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W1*) (S1: W0 W1) 
Level 2 (after pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W1*) (S1: W0 W1) 
     Cost So Far: -43.0 
     Cost To Go:  -21.0 
Pruned! Est. cost of -64.0 is less than incumbent -62.0 
 
Level 3 (before pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W1*) (S1: *W0* W1) 
Level 3 (after pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W1*) (S1: *W0* W1) 
     Cost So Far: -64.0 
     Cost To Go:  0.0 
Pruned! Est. cost of -64.0 is less than incumbent -62.0 
 
Level 3 (before pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W1*) (S1: *W1*) 
Level 3 (after pruning) 
     (W0: *Y* N) (W1: *Y* N) (S0: *W1*) (S1: *W1*) 
     Cost So Far: -66.0 
     Cost To Go:  0.0 
Pruned! Est. cost of -66.0 is less than incumbent -62.0 
 
Level 1 (before pruning) 
     (W0: *Y* N) (W1: *N*) (S0: W0 W1) (S1: W0 W1) 
Level 1 (after pruning) 
     (W0: *Y* N) (W1: *N*) (S0: W0) (S1: W0) 
     Cost So Far: -10.0 
     Cost To Go:  -40.0 
 
Level 2 (before pruning) 
     (W0: *Y* N) (W1: *N*) (S0: *W0*) (S1: W0) 
Level 2 (after pruning) 
     (W0: *Y* N) (W1: *N*) (S0: *W0*) (S1: W0) 
     Cost So Far: -29.0 
     Cost To Go:  -21.0 
 
Level 3 (before pruning) 
     (W0: *Y* N) (W1: *N*) (S0: *W0*) (S1: *W0*) 
Level 3 (after pruning) 
     (W0: *Y* N) (W1: *N*) (S0: *W0*) (S1: *W0*) 
     Cost So Far: -50.0 
     Cost To Go:  0.0 
Incumbent assigned: -50.0 
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Level 0 (before pruning) 
     (W0: *N*) (W1: Y N) (S0: W0 W1) (S1: W0 W1) 
Level 0 (after pruning) 
     (W0: *N*) (W1: Y N) (S0: W1) (S1: W1) 
     Cost So Far: 0.0 
     Cost To Go:  -44.0 
 
Level 1 (before pruning) 
     (W0: *N*) (W1: *Y* N) (S0: W1) (S1: W1) 
Level 1 (after pruning) 
     (W0: *N*) (W1: *Y* N) (S0: W1) (S1: W1) 
     Cost So Far: -12.0 
     Cost To Go:  -44.0 
Pruned! Est. cost of -56.0 is less than incumbent -50.0 
 
Level 2 (before pruning) 
     (W0: *N*) (W1: *Y* N) (S0: *W1*) (S1: W1) 
Level 2 (after pruning) 
     (W0: *N*) (W1: *Y* N) (S0: *W1*) (S1: W1) 
     Cost So Far: -33.0 
     Cost To Go:  -23.0 
Pruned! Est. cost of -56.0 is less than incumbent -50.0 
 
Level 3 (before pruning) 
     (W0: *N*) (W1: *Y* N) (S0: *W1*) (S1: *W1*) 
Level 3 (after pruning) 
     (W0: *N*) (W1: *Y* N) (S0: *W1*) (S1: *W1*) 
     Cost So Far: -56.0 
     Cost To Go:  0.0 
Pruned! Est. cost of -56.0 is less than incumbent -50.0 
 
Level 1 (before pruning) 
     (W0: *N*) (W1: *N*) (S0: W1) (S1: W1) 
Level 1 (after pruning) 
     (W0: *N*) (W1: *N*) (S0:) (S1:) 
     Cost So Far: 0.0 
     Cost To Go:  -200000.0 
Pruned! Est. cost of -200000.0 is less than incumbent -50.0 
 
Search completed! Best solution: -50.0 
62 

5.3.3 Benchmarking 
For purposes of comparing the performance of the algorithm implemented in the API with 

optimized (“professional”) algorithms, the UWLP problem was run for varying numbers of 
variables (warehouses and stores) from 6 to 13. Variable numbers over 13 resulted in running 
times over five minutes, and results are not shown here. Figure 4 provides an overview of the 
results of the benchmarking. Results from the API algorithm are shown in blue; the black lines 
represent results using purely inference-based algorithms shown in [3] (complete tight case, page 
5). The performance curve clearly grows exponentially with the number of variables. 
 

It can be seen that the inference-based algorithm is about a factor 30 faster than our branch 
and bound algorithm using mini-bucket heuristics. For details of the inference-based algorithms, 
please refer to [3]. This is somewhat reasonable given that the algorithm and code presented here 



Wilfried Hofstetter & Erica Gralla 
16.413 

was intended to teach the algorithm, rather than solve problems extremely rapidly. The code 
could most likely be further optimized. 
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Figure 4: Benchmarking results 
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