Near-Term Mars Colonization

- DevelopSpace Project -

April 20, 2008

Overview

- Project recap
- Some project "mechanics"
- Discussion of areas of work / assignment to team members
- Overview of some initial analysis

Project Motivation

- For manifold reasons, it is our destiny as humans to expand our presence:
 - Since the existence of our species, we have expanded our habitat over almost the entire Earth
 - This expansion was enabled by using technology (e.g. living in central Europe or northern Minnesota and surviving the winter)
- The next logical step is to go beyond Earth
 - Requires more significant reliance on technology
- In addition to expanding our presence, there may be numerous other benefits from this:
 - Rekindling of frontier spirit, societal invigoration
 - Generation of new technologies, now knowledge
 - Backup of our species and its achievements

There are people who want to make it happen

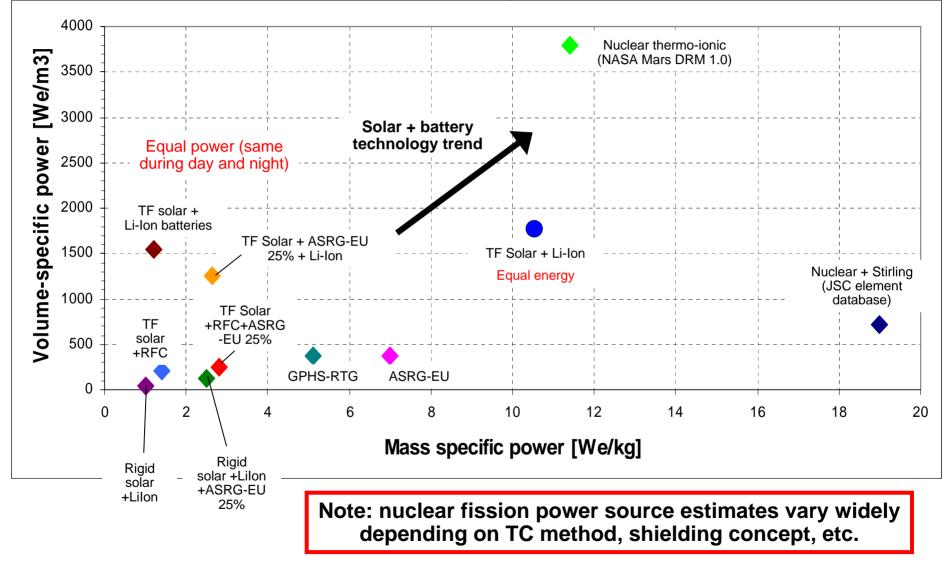
Project Goals

- To determine what would be involved in implementing a sustained human presence on Mars in the near future
 - By way of one-way colonization
 - For minimum closure and maximum closure levels
 - For constant or growing population size
- To investigate the cost of providing the colony with the capability for emergency evacuation back to Earth
- To gain an understanding of the financial needs and the time phasing of a near-term Mars colonization program
- To further develop the DevelopSpace infrastructure through identification of infrastructure needs

How to Colonize Mars

- Here are some initial ideas for our project:
 - Humans will be sent one way, possibly with an initial emergency Earth return capability
 - Return capability could be based on direct return
 - Re-supply will initially be provided from Earth, possible augmented with ISRU on Mars
 - Initially atmosphere-based ISRU
 - Possibly also greenhouses for growing food
 - The population of the colony will be assumed to grow over time
 - Maybe 4 crew initially, minimum of 2 additional every opportunity

Project Mechanics


- We now have a project website:
 - http://wiki.developspace.net/Minimalist_Human_Mars_Mission
- Action items:
 - Create project mailing list (Paul?)
 - Update your contact details / add yourself to the team
 - Project members need to identify task(s) they want to work on and put together an action plan for the task(s)
 - Review NASA Mars DRM 1.0, 3.0, Exploration Blueprint Data Book, and Mars Direct (see key references)
- Project timeline:
 - What about a review in early September 2008?

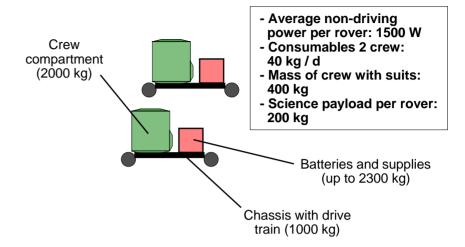
Possible Areas of Work for Project

٠	Surface power: solar vs. nuclear + different secondary power generation and energy storage technologies	Chase	
•	Surface infrastructure other than power: habitation, surface mobility / transportation / EVA, surface operations	Arthur, Ryan	
•	Logistics, life support, and ISRU: life support system closure, ISRU, re-supply from Earth	Wilfried	
•	Earth-Mars transportation, Mars EDL	Arthur, Chase	
•	Return to Earth in emergency		
•	CAD modeling / visualization of concepts	Ryan	
•	Location, location, location! Where should the colony be located?	All	
•	Financial and management considerations: financing of project, operational management, program planning	Paul (advising)	
•	Integration of results into coherent strategy	Wilfried	
•	Other (information system)		

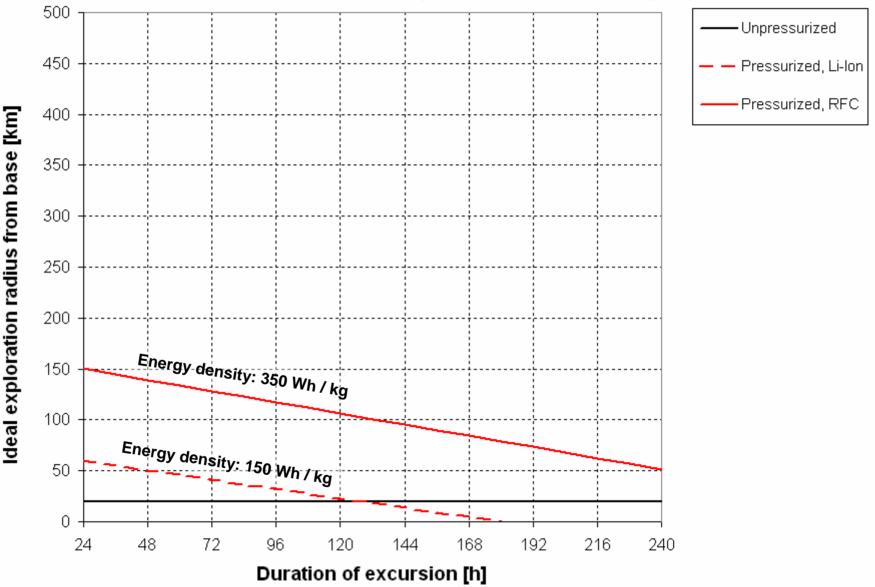
Preliminary Surface Power System Assessment

- Volume and Mass Specific Power -

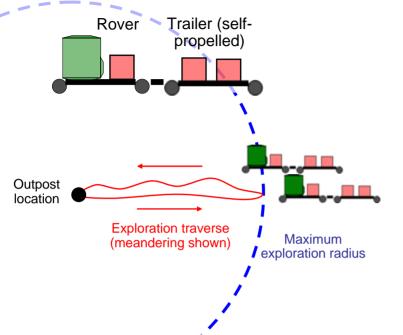
Baseline Surface Mobility Capabilities


Proposed

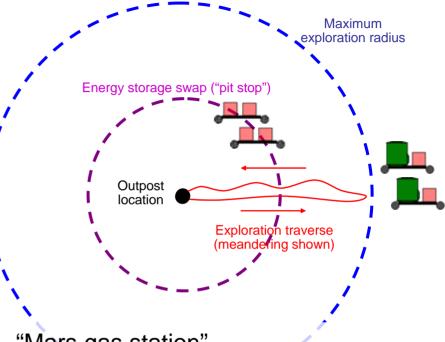
Apollo 15, 16, 17



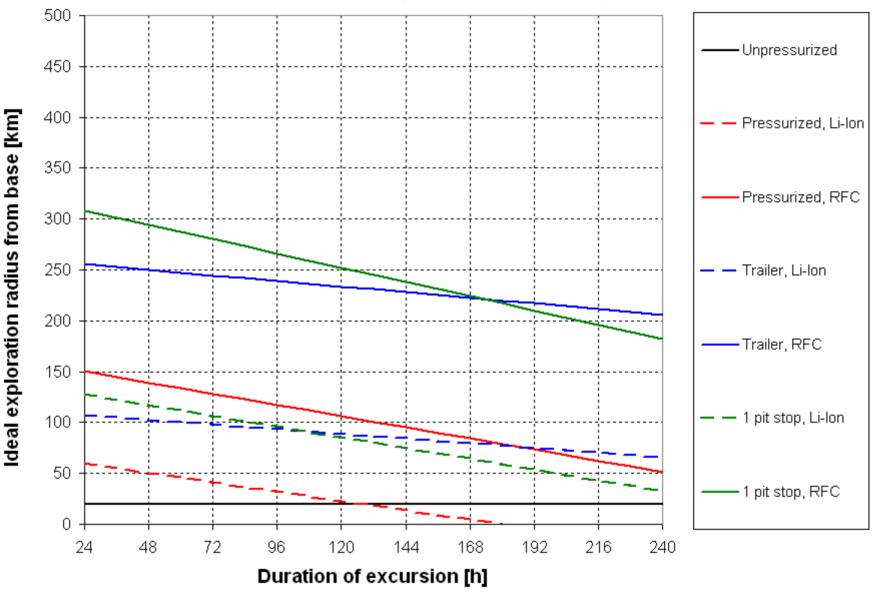
- Unpressurized
 - 2 independent unpressurized rovers on traverse, each can carry the entire crew back to base in contingency
 - Exploration radius is limited by contingency constraints and EVA time
 - Due to 2 independent vehicles on traverse <u>drive-back constraint</u> applies
 - This is different from the walk-back constraint for Apollo traverses which had only a single vehicle – the LRV
 - 20 25 km ideal exploration radius from base can be achieved for 6 8 hour excursion

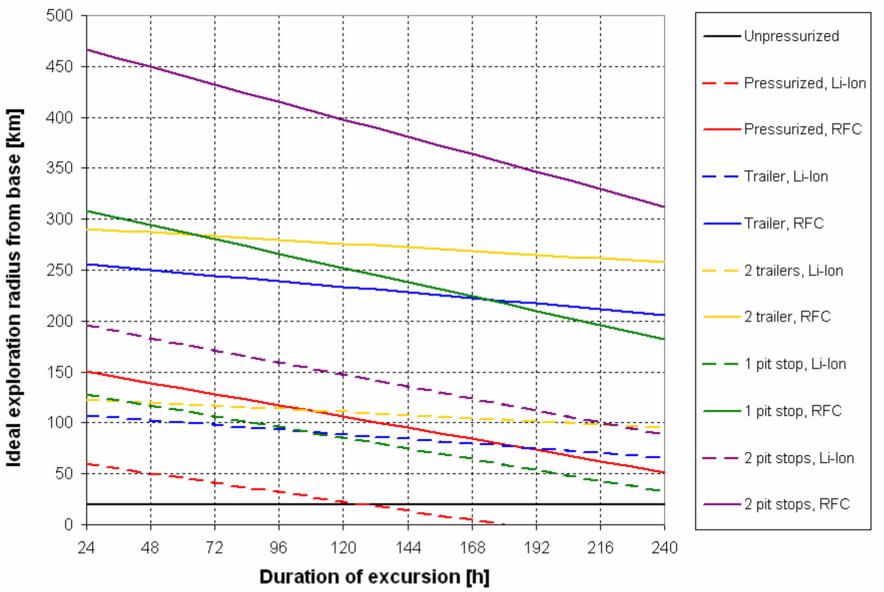


- Pressurized
 - 2 independent pressurized vehicles on traverse, each can carry the entire crew back to base in contingency
 - Either the camper concept or a pressurized rover can be used (we think there are advantages to the camper concept)
 - Exploration radius is limited by consumables and energy storage mass rather than contingency constraints
 - For the analysis presented here we assumed 2 pressurized rovers with a total mass of 5700 kg (nominal 2 crew)


Baseline Surface Exploration Capabilities

Extension of Pressurized Mobility Radius


- Self-propelled trailer
 - 5700 kg trailer, 1000 kg chassis + drive train and 4700 kg energy storage mass
 - Trailer is self-propelled
 - Analysis shows parasitic drag results in higher mass than propelled trailer
 - Trailer is delivered to base as with logistics excess capability


- "Mars gas station"
 - Self-propelled chassis with energy storage and solar power generation is pre-positioned
 - Crew visits station with pressurized rovers and swaps energy storage ("pit stop")
 - Can theoretically be extended indefinitely

Extended Surface Exploration Capabilities (1) Unpressurized Pressurized, Li-Ion Ideal exploration radius from base [km] Pressurized, RFC - Trailer, Li-Ion Trailer, RFC Duration of excursion [h]

Extended Surface Exploration Capabilities (2)

Extended Surface Exploration Capabilities (3)

Backup Slides

Why Mars?

- Why would we want to expand to Mars, instead of other destinations such as the Moon?
- Of all the bodies of the inner solar system eligible for near-term colonization, Mars is the most suitable
 - Mars has an atmosphere, specifically a CO₂ atmosphere (GCR / SPR protection, feedstock for ISRU)
 - All the other elements necessary for sustained human existence are present in one for or another on the Martian surface
 - Nitrogen, hydrogen, oxygen, carbon, iron, aluminum, etc.
 - From a mass / energy perspective, the Martian surface is about as hard to reach as the lunar surface
 - Higher gravity level than on the Moon
- Major challenges of Mars are that it takes longer to get there and aeroentry / aerocpature is required

Actions

- Everyone
 - Select the areas that you would like to work on, and formulate an initial set of tasks for yourselves
 - Think about tools we need for this project on DevelopSpace
 - Start the work!
- Wilfried
 - Set up project site on DevelopSpace
 - Prepare kick-off next weekend