turbine notes 2/14/05

- effect of droplet formation (ways to avoid, how to calculate, how much can we tolerate for a short life span, effects – corrosion?)
- rotating seals and hydrodynamic journal bearing design pointers

- some key assumptions and values:

35% pump and turbine efficiency

.44 kg/s of LOX

P_shaft = 6.6kW = ( mdot ΔP ) / ( eta density ) = pump power

P_turb = P_shaft / eta = mdot cp ΔT = 19kW

cp_LOX = 910

ΔT = 1900 / .44*910 = 50K
(210/160)^(1.4/.4) = 2.6… would need a pressure ratio of 2.6 across the turbine to adiabatically get the power that we need.  but we don’t have adiabatic flow, we need an even bigger pressure drop ( this would cause us to be supersonic in our nozzles, which we don’t want ( need a dual stage turbine because we can’t go adiabatically
T < 155K condenses GOX

P_chamber = 3.5MPa

P_incoming = 6MPa (assuming negligible pressure loss through cooling circuit)

ω = 85000 rpm (pump design speed)

sonic at 300K is 330 m/s

density of GOX at turbine conditions: 3.5e6 / (300*.857*260) = 52 kg/m^3

this gives V=280m/s
.44 / (52 * 280) = 3e-5

turbine diameter is 2.5”=0.0635m

( blade height = .15mm!! SO small!
we may be forgetting effective area… how does this work?  it should help us out.  the velocity going across the blade row is really V * cos(theta)… 
ArcCos[0.15] = 81.4 degrees gives us 1mm height (better, but still small)
- 2D (cantilever) turbine design: different from axial flow and “3D” radial turbine how?  and basic pointers?  (esp. what about changing flow area?)
- we’re finding really small blade heights – what do we do about this? is there a way to block off some of the stators?  what does this do the rest of the 
Prof. Spakovszky:

- have target of P_shaft_net (6.6kW for us) and Ω for shaft

- may have gotten ourselves in a dead end because the pump is already fixed…  this is a matching problem too, we’ll have to see
- useful to do things nondimensionally to get ourselves out of our trap (circle of blade height, radius and power output)


ψ = Δh_t / u2^2


φ = V_x / u2

σ = Δh_R / Δh_tot


(station 2 = rotor exit)

- impulse will be ψ = 2 - 3 and σ~0
- a good φ is 0.5 – 1.0 (we’re at 1.9/24 = 0.79, so not bad)

- changing the area will change the velocities, but we can neglect in velocity triangles at this point

- impulse doesn’t need as much sealing, high power in single stage, but high losses

- Euler turbine: Δht = cp Tin (1-1/PI^(gamma-1/gamma))= Ω^2 (Rle^2 – Rte^2)


where Rle = leading edge radius, Rte = trailing edge radius


( what pressure ratio, then what radius ratio do we need (2 - 4) ?


might be able to do this in a single stage after all

- redo velocity triangles nondimensionally starting with a φ of 0.5 or 1.0… leave radius and speed as variables – when you start looking at mass flow you’re sizing.  save that for after you have the nondimensional design done.  just see what we get.
- look at Antoine Deux’s thesis on the micro engine turbine – it’s a single stage 2D turbine… doing it nondimensionally it should be about the same

- at this point, don’t worry about supersonic flow… it IS possible to have a shock free supersonic turbine if you space things properly – the actual throat isn’t right at the blades anyway, and with a pressure ratio of less than 2 we’re not going to end up with supersonic flow (at the very least we have bigger problems at the moment)

Vr = Q/r; VΘ = Γ/r ( Vr/VΘ = Q/Γ as you get smaller, V’s go up
- droplet formation:

shock condensation in steam turbines (many little droplets condense together and impinge together, causing pitting)

- turbine and pump really should be looked at together – can do this nondimensional analysis for the entire package just as a sanity check to make sure that we’re on the right track with the pump


pick ψφσ for pump – this takes out Ω and mass flow ( might actually be an easier problem to solve than the one we’ve got trying to add the turbine on the end of the pump.

- hydrodynamic journal bearings for pump: 

have bearing running in LOX, using Vespel plastic

- how do you estimate the load bearing capability?

- Hamrock, “Lubrication Theory”, Derachilds (?)

Steps:


- solve Reynolds equation ( p(Θ, z, r)

- Sommerfeld solved the Reynolds eqn for this problem (1st work on long bearings is Sommerfeld solution), get plot of p vs. Θ

- radial loading component, Fr, integrate pressure on surface around (done, there’s a formula for it)… pressures might be lower than atmospheric on full Sommerfeld, so look at half Sommerfeld solution (violates conservation of mass at half point


- Ocvirk did short bearing, which is what’s relevant to us, have formula for Fr=f(ε)

- nondimensionalize this to get Sommerfeld number: σ = (μ Ω L R)(L/C)^2 ?, get ε from chart, then can use that in the Fr expression

- can just use the Ocvirk formula, just good to know where it comes from
- can look at plots of different bearing designs to see what load bearing capacity is

